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NASA STI Program ... in Profile 
 
 

Since its founding, NASA has been dedicated  
to the advancement of aeronautics and space 
science. The NASA scientific and technical 
information (STI) program plays a key part in 
helping NASA maintain this important role. 

 
The NASA STI program operates under the 
auspices of the Agency Chief Information Officer. 
It collects, organizes, provides for archiving, and 
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contractors and grantees. 
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Collected papers from scientific and 
technical conferences, symposia, seminars, 
or other meetings sponsored or  
co-sponsored by NASA. 
 
SPECIAL PUBLICATION. Scientific, 
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NASA programs, projects, and missions, 
often concerned with subjects having 
substantial public interest. 
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English-language translations of foreign 
scientific and technical material pertinent to  
NASA’s mission. 
 

Specialized services also include organizing  
and publishing research results, distributing 
specialized research announcements and 
feeds, providing information desk and personal 
search support, and enabling data exchange 
services. 

 
For more information about the NASA STI 
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at http://www.sti.nasa.gov 
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1. Introduction 
The Unmanned Aircraft Systems (UAS) Traffic Management (UTM) Service Supplier (USS) 
Framework for Authentication and Authorization (UFAA) is the basis for secure and confident 
data exchanges between the Flight Information Management System (FIMS) and the USS 
Network and within the USS Network itself.  UFAA is built upon the OAuth 2.0 approach to 
federated authorization, with details supplied by various Internet Engineering Task Force (IETF) 
Request for Comment documents (RFCs).  Whenever possible, a specific standard is used to 
support a design decision within UFAA, and when an applicable standard is not found/used, the 
technical decision is explained as much as possible.  This document describes UFAA in detail. 
It is intended to serve as a reference for other key UTM documents and should be useful to 
many UTM stakeholders.  This is an informative document.  The requirements stated or implied 
in this document will need to be fully vetted and reviewed by appropriate stakeholders before 
becoming operational.  It is highly encouraged that in any design decisions for future applicable 
standards that are counter to or missing from the decisions presented herein be justified in that 
future standard. 

2. Supporting UTM Documents 
ID Title Status 

UTM_Accounting UTM Accounting Internal draft only 

USS_Spec USS Specification Partner draft 

UTM_ConOps_NASA NASA UTM Concept of Operations Final 

UTM_ConOps_FAA FAA UTM Concept of Operations, v1.0 Final 

UTM_ConOps_FAA_v2 FAA UTM Concept of Operations, v2.0 Internal draft 

 

3. Overview 

3.1. UAS Traffic Management 
This document is focused on the architecture and requirements of an authentication and 
authorization system within the UTM System.  UTM has the stated goal of providing safe, 
efficient, and fair access to the low-altitude airspace for small Unmanned Aircraft Systems 
(sUAS).  The management of these sUAS operations is envisioned to take a different form than 
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the management of traditional aviation in the National Airspace System (NAS).  In UTM, 
management of the airspace is a partnership between the Air Navigation Service Provider 
(ANSP) and industry.  Some of the key services that might have been provided by the ANSP for 
traditional aviation are provided instead by a federated set of UAS Service Suppliers (USS).  A 
new, UTM-specific component that is implemented on the ANSP side for this system is called 
the Flight Information Management System (FIMS).  This federated, collaborative approach to 
airspace management supports several key properties of the UTM System including scalability, 
enabling more seamless evolution, partitioning sUAS management from traditional aviation, and 
others.  For a comprehensive description of the UTM System, both versions of the Concept of 
Operations ([UTM_ConOps_NASA] and [UTM_ConOps_FAA]) provide the primary starting 
point.  The [USS_Spec] provides further details on what it means to be a USS.  This document 
focuses on the authentication and authorization architecture and associated requirements for 
the sharing of data amongst the various USSs and between USSs and FIMS. 

3.2. Authentication 
Authentication is defined  by the National Institute of Standards and Technology (NIST) as 1

“Verifying the identity of a user, process, or device, often as a prerequisite to allowing access to 
resources in an information system.”  Authentication is primarily a machine-to-machine activity 
in the USS Network, including authentication to the authorization server by USSs.  USS 
subjects are authenticated using signatures generated by public-private key pairs.  The public 
keys are shared via X.509 certificates.  These certificates are rooted at a trusted Certificate 
Authority (CA).  If these public certificates are self-served, they are available at a well-known 
location on the USS server.  Fetching the certificate from this location is accomplished via a 
secure connection (using the Transport Layer Security standards) with a requirement that a 
name in the fetched certificate matches a name the certificate used in creating the secure 
connection.  The name of the subject is provisioned upon successful on-boarding  of the USS in 2

the UTM System and remains static even if the certificates change in the future.  The name is 
an X.509v3 DNS (Domain Name System) name, supplied as a Subject Alternative Name of type 
“DNS.”  More details are provided in the USS Naming section below. 
 
The identity and roles assigned to the USS are maintained in a separate identity management 
system which are described in Appendix A2.  The identities and roles provisioned to each 
identity are securely available to the UTM authorization server and are known to the identified 
USS. 
 
When requests are made to another server in the USS Network, they are signed using the 
certificate available in the well-known location.  The receiving server checks the signature using 
that public key in the appropriate certificate.  This certificate may be cached on the receiving 
server or may be fetched if it is not available locally.  If the signature on the request is valid, then 

1 See https://csrc.nist.gov/glossary/term/authentication, accessed 08 Aug 2019. 
2 On-boarding of USSs and provisioning of identities within the authorization server is out of scope of this 
document. 
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the name in the certificate used to check the signature represents an authenticated subject. 
More details on the signing and checking process are provided in the Message Signing section. 

3.3. Authorization 
Authorization is defined by NIST 800-82r2 and RFC 4949 as “The right or a permission that is 
granted to a system entity to access a system resource.” OAuth 2.0 is a framework for 
delegated, federated authorization.  It allows for one party (the client) to act on behalf of another 
party (the resource owner) to yet a third party (the resource server) while protecting sensitive 
credential information through mediation via an authorization server.  As a primary feature, 
OAuth 2.0 removes the requirement of identity management from the resource server for these 
exchanges.  This helps the UTM System achieve its design goals of relinquishing a significant 
portion of centralized management to actors that need a method to trust each other.  In UFAA, a 
single authorization server, called FIMS_Authz, provides tokens to USSs that can be used to 
access resources on other USSs . 3

 
This approach to resource access is achieved through the request of access tokens from 
FIMS_Authz.  These access tokens have specific details about what the bearer of the token is 
allowed to access, from whom, by when, and under other such constraints.  These access 
tokens are passed as bearer tokens in HTTP requests, however they do not work as strict 
bearer tokens, since UFAA leverages requires further checks on the token.  These additional 
token constraints allow for security  within the system in the event that the token is obtained by 4

a malicious party, thus breaking the pure definition of a bearer token (i.e. any entity in 
possession of a bearer token would have all privileges defined in the token).  
 
Authorization is somewhat simplified from the full OAuth 2.0 specification in that the client (i.e. 
the systems making the requests for access tokens) and the resource owner (i.e. those that 
have access rights to resources stored on other systems) are the same entity, namely USSs (or 
FIMS).  Thus, in OAuth 2.0 language, UFAA uses the client credentials grant flow wherein the 
client provides its own credentials to the authorization server to receive an access token.  The 
simplified exchange is described in the following diagram: 

3 Note that for the remainder of the document we will refer only to USS-to-USS communication, but in 
reality, FIMS uses UFAA in the same way to allow FIMS-to-USS and USS-to-FIMS communications. 
4 Security is a broad term that implies many specific features including, but not limited to, authentication, 
message integrity, and non-repudiation. 
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Figure 1.  USS to FIMS Authorization server token request. 

4. Threat Modeling and Testing 
The contents of this document are the result of examination of industry best practices, threat 
modeling, collaborative simulations, and field testing.  While the full details of the threat 
modeling exercises will not be published, there are key references for understanding how it was 
approached for this system. 
 
The primary document for threat modeling this system is RFC 6819.  That document details all 
known threats to OAuth 2.0 implementations as well as mitigations for those threats.  Note that 
the overall threat tree is pruned considerably for UFAA since there are limited flows that are 
implemented and there are controls outside of OAuth 2.0 that mitigate certain threats. 
 
A newer document (“JSON Web Token Best Current Practices, draft-ietf-oauth-jwt-bcp-06”) 
describing threats and mitigations relevant to UFAA is currently a draft Best Current Practices 
from IETF.  Those threats and mitigations have not been fully incorporated into this document. 
However, the further use of that Best Current Practices document are discussed in the 
Appendix as an open issue. 
 
For overall threat modeling, the NASA UTM Project took an approach leveraging both the 
STRIDE (a mnemonic for Spoofing, Tampering, Repudiation, Information Disclosure, Denial of 
Service, and Elevation of Privileges) and DREAD (a mnemonic for Damage, Reproducibility, 
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Exploitability, Affected Users, and Discoverability).  STRIDE aids in categorizing threats and 
DREAD helps quantify the potential damage of a realized threat.  There are newer, more 
advanced approaches to threat modeling, but leveraging these two selected approaches 
provided reasonable coverage for the design of this system, despite debate as to the 
effectiveness of STRIDE and DREAD (even from the creators at Microsoft, who no longer use 
these approaches).  This combined STRIDE/DREAD approach was influenced by the 
well-documented threat modeling of the OpenStack project.  NASA is further developing 
approaches to threat modeling that could be applied to this or future systems. 
 
As for testing, many of the elements described herein were exercised in NASA’s Technical 
Capability Level 3 (TCL3) and TCL4 Demonstrations as well as during collaborative simulations 
leading up to those events. 

5. Key Concepts 
In this section, an overview of several key concepts is provided.  By providing insight into each 
of these on their own merits, and as independent of each other as possible, it will ease the 
discussion of UFAA to follow.  Many of these concepts are supported by published 
specifications.  Those specifications are typically written such that the application or system 
using that concept can make design decisions as to which aspects of the specification will be 
required for that application or system.  Thus “optional” items in the specification can become 
“required” by a design decision in a particular implementation, like UFAA.  Additionally, the 
specifications allow extensions to support the application.  Whenever possible, those design 
decisions on optional elements and extensions are described in the subsections below. 

5.1. Public Key Infrastructure (PKI) 
UTM relies on traditional certificate authorities to provide confidence in the identities of servers 
for the purpose of establishing secure connections.  Specifically, USSs must support Transport 
Layer Security (TLS) (the USS Specification defers to the most recent version of NIST 800-52 to 
define TLS requirements, currently 1.2+ as of this writing) and they do so by establishing a 
secure connection using a public X.509 certificate that is assured by a chain of trust to a known 
CA.  This is a completely independent system from UTM and is also the basis for secure 
connections on the Internet. 
 
These certificates are generally not used for application-level signing or encryption.  Thus, an 
additional certificate is required to meet the needs of UTM communication, which relies on the 
ability of a server to sign its requests to provide authentication, message integrity, and 
non-repudiation with the USS Network.  This additional certificate must be issued by a valid CA, 
and may actually be the same certificate used to establish the TLS connections at the USSs’ 
discretion, though this is not required nor recommended.  There is a requirement that this 
certificate is made available in a well-known location such that clients can request it. 
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This directly requestable certificate will be called “the UFAA Certificate” to distinguish from “The 
Internet Connection Certificate” used to create the TLS connection.  The UFAA Certificate is 
required to have at least one DNS name in common with at least one DNS name contained in 
The Internet Connection Certificate (see the USS Naming section below for details).  Among 
other useful features, this naming connection requirement provides assurance that the server a 
USS is connected to is the same one that is allowed to use the UTM Framework Certificate 
being fetched, since there are appropriate matching names.  This name that is common 
between the two certificates is also the USS Name assigned to the USS providing these 
certificates. 
 
This approach to PKI leverages the existing Internet approach and chains of trust, allows for 
application-specific certificates, but does not require the implementation of an 
application-specific certificate authority. 
 
Public-Key Infrastructure using X.509 is typically called PKIX, as defined in RFC 5280. 

5.2. USS Naming 
The concepts related to naming entities (specifically USSs) within the UTM System and UFAA 
leverages best practices and appropriate references.  For example RFC 6125 related to service 
identity, TLS, and X.509 has specific guidelines on which names should be used by applications 
relying on TLS.  Specifically, this RFC notes that the X.509v3 Subject Alternative Name of the 
DNS type should be used and that wildcards in names should be considered carefully.  Within 
UFAA, the provisioned name of a USS MUST be free of wildcards.  The provisioned name 
MUST NOT be matched against wildcards in any certificate (The Internet Connection Certificate 
nor the UFAA Certificate). This is the field UFAA will use for identity provision as used by the 
Authorization Server and thus, subsequently will be used for comparing names in various data 
objects including access tokens and certificates. 
 
The relevant section of the X.509 certificate would look something like the following: 
 

X509v3 extensions: 

            ... 

            X509v3 Subject Alternative Name: 

                DNS:www.example.com, othername:<unsupported>, 

DNS:www.sub.example.com, othername:<unsupported> 

            ... 

 
So if this were the certificate used to establish identity in the subject following on-boarding, the 
identifier for this USS would be locked in as either www.example.com  or 
www.sub.example.com  since the name must be in the Subject Alternative Name section with 
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a DNS type.  Again, even if the certificate is changed in the future, the subject would have to 
ensure that the name used to provision identity in the UTM System is again included in the new 
certificate. The other alternative would be the retirement of the current identifier and the 
establishment of a new one.  This process is not yet documented and is likely more intensive 
than having the USS obtain a new certificate with the appropriate names. 
 
The provisioned name must not include any wildcards. The maximum number of names allowed 
in the Subject Alternative Name field will be limited to, say, fewer than 100, pending further 
insight or formailization of this requirement. 

5.3. Additional X.509 Elements 
The X.509v3 extension field Key Usage must be present in the UFAA Certificate and the 
digitalSignature and contentCommitment/nonRepudiation bits MUST be enabled.  See RFC 
5280 section on Key Usage for the definition and usage of these bits. 
 
The X.509 certificate MUST be in DER (Distinguished Encoding Rules) format (ITU-T X.690 
defines DER, which is a part of the ASN.1/X.680 standard) to allow for appropriate 
thumbprinting. 
 
Certificates are rooted to a Certificate Authority (CA).  In order to have confidence in that trusted 
root, there needs to be some process to manage appropriate (trusted) CAs.  Currently, that 
process is delegated to the well-documented approach from Mozilla and their Mozilla Root Store 
Policy.  That policy allows for an updated list of trusted CAs that is distributed with Mozilla 
browsers.  That list is leveraged for the purposes of UFAA.  The implementation of that policy 
allows for an updated list of trusted CAs listed online.  Any CA on that list with a geographic 
focus of ‘global’ or ‘USA’ will be considered valid for use as a trust root for any certificate used in 
UFAA. 

5.4. JSON 
“JavaScript Object Notation (JSON) is a text format for the serialization of structured data.” 
Simply put, it is a structured way of organizing key-value pairs for the exchange of data.  Text 
encoding is specified as UTF-8. See RFC 8259 for details. The following is an example provided 
by json-schema.org: 
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{ 

    "title": "Person", 
    "type": "object", 
    "properties": { 

        "firstName": { 

            "type": "string" 
        }, 

        "lastName": { 

            "type": "string" 
        }, 

        "age": { 

            "description": "Age in years", 
            "type": "integer", 
            "minimum": 0 
        } 

    }, 

    "required": ["firstName", "lastName"] 
} 

5.5. .well-known 
A well-known Uniform Resource Identifier (URI) is a URI (RFC 3986) whose path component 
begins with the characters "/.well-known/", and whose scheme is "HTTP", "HTTPS" (RFC 5785). 
It is possible to register specific resource names that can trail .well-known in the path such that 
the chance of conflict in naming is reduced between applications using this scheme.  For UTM, 
a path starting with “/.well-known/uas-traffic-management/” will be required.  This may be 
registered with IANA in the future when some appropriate standards body is available to act as 
a point of contact for that registration. 

5.6. JWK 
A JWK is a JSON-formatted file that describes cryptographic key data.  In this case the data will 
be an X.509 certificate as described in the PKI section above.  A set of JWK objects can be 
formatted as a JWKS (JSON Web Key Set).  See RFC 7517 for details. 
 
There will be a file representing a JWKS called “utm.jwks” to complete the path component as 
“/.well-known/uas-traffic-management/utm.jwks”.  This JWKS must contain a JWK describing 
the UFAA Certificate.  That JWK must contain the following fields: 
 

● kty: Key Type parameter, required in all JWK per specification. 
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● use: Use parameter, must contain the value “sig” indicating the key is used for 
signatures. 

● alg: Algorithm parameter, the set of algorithms intended for use with this key.  This set 
will likely be defined precisely in future versions of this document. 

● kid: Key ID parameter, a unique identifier for this key.  Must be a Universally Unique 
Identifier (UUID), version 4 (UUIDv4). This will be used to match against the ‘kid’ 
parameter used in Message Signing discussed below. 

● x5u: X.509 URL parameter is a URI that refers to an X.509 certificate.  This URL path 
component must begin with “/.well-known/uas-traffic-management/” and be on the same 
server as the JWKS. Usage rules must match “use” parameter. 

● x5t#S256: X.509 Certificate SHA-256 Thumbprint for the same certificate referenced in 
x5u. 

 
The following is an example of an appropriately formatted JWKS file that would be located at 
www.example.com/.well-known/uas-traffic-management/utm.jwks: 
 

{ 

  "keys": [ 

    { 

      "kty": "RSA", 
      "use": "sig", 
      "kid": "f6d7ac10-0ad9-4193-8cbd-453087ecd472", 
      "x5u": 

"www.example.com/.well-known/uas-traffic-management/my_cert.der", 
      "x5t#S256": 

"77ad11c0fbb461eabe35c1dde60c5a871ae80b5c019029b4cdb2493f2f2813db" 

    } 

  ] 

} 

 
Whenever the JWK or JWKS file is fetched from a server for purposes of UTM, the requirements 
provided in RFC 6125 will be in effect.  The steps in Section 6.1 of RFC 6125 are especially 
relevant.  Without duplicating the detail found in that reference, the process is to have a target 
identifier that is the UTM identifier for that USS (which is a DNS name as described above). 
This section will be updated as needed and as developed. 

5.7. JWS 
A JWS (JSON Web Signature) is a way to represent data along with a signature in a 
standardized way based on JSON.  See RFC 7515 for details.  JWS is used in several contexts 
within UFAA, so further details are deferred until discussion of those contexts below. 
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 The choice of signing algorithms is broad.  RFC 7518 is the key reference for algorithms to be 
used with JWS.  Specifically Section 3.1 of that document details the algorithms that may be 
used with JWS.  For simplicity, this specification defers to the “Required,” “Recommended,” and 
“Recommended+” algorithms as the ONLY ALLOWED algorithms for signing.  See section 
A1.11 for further discussion on this set of algorithms.  All USSs must support reading signatures 
that are generated with these algorithms and reject all signatures generated with any other 
algorithm.  This limits UFAA to allowing only HMAC using SHA-256, RSASSA-PKCS1-v1_5 
using SHA-256, and ECDSA using P-256 and SHA-256.  Those algorithms are further detailed 
in RFC 7518 with appropriate references. 

5.8. Base64url 
Base64url is a method of encoding data and is defined in Section 2 of RFC 7515 as follows: 
 
      Base64 encoding using the URL- and filename-safe character set 
      defined in Section 5 of RFC 4648 [RFC 4648], with all trailing '=' 
      characters omitted (as permitted by Section 3.2) and without the 
      inclusion of any line breaks, whitespace, or other additional 
      characters.  Note that the base64url encoding of the empty octet 
      sequence is the empty string. 

5.9. JWT 
A JWT (JSON Web Token, pronounced “jot” like “dot”) contains a formalized set of “claims” 
presented as JSON provided as the body of a JWS (or JWE which is currently not part of UFAA) 
that is signed by some entity.  See RFC 7519 for details.  
 
The access token provided by the authorization server within UFAA is a JWT.  That JWT 
contains the following JWT-defined claims: 
 

● iss : The Issuer Claim identifies the system that issued the JWT, specifically the 
authorization server in UFAA. 

● sub : The Subject Claim identifies the entity authorized to access resources and actually 
use the access token, value set to the provisioned name within UTM (a static DNS Name 
as discussed above). 

● exp : The Expiration Claim indicates a time after which the token is to be considered 
invalid. In UFAA, this value is set to 30 minutes after the “issued at” time. Note this is a 
Unix timestamp, not an ISO timestamp per the JWT spec. 

● iat : The Issued At Claim indicates the time at which the token was issued. Note this is 
a Unix timestamp, not an ISO timestamp per the JWT spec. 

● jti : The JWT ID Claim is a unique identifier for the JWT. In UFAA, this is a UUIDv4. 
 
And it will also contain at least the following other claim (not included in the JWT spec): 
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● scopes : The set of scopes granted by the authorization server. An array of strings. 

 
Other fields may be present and will be further documented as they are finalized.  Specifically, 
the aud  claim is is discussed more in Section A1.4. 
 
The following is an example JWT claim set for a USS, with provisioned name 
“uss.provider321.net” that would be signed as a JWS to be used as an access_token: 
 

{ 

    "iss": "fims-authz.utmserver.com", 
    "scope": [ 

        "utm.nasa.gov_write.operation" 

    ] 

    "iat": 1521759704, 
    "exp": 1553295704, 
    "sub": "uss.provider321.net", 
    "jti": "c3a1b1d1-0cf8-497a-ab90-7c06805f4d86" 
} 

 

5.10. Token Revocation 
In some implementations and within the OAuth 2.0 concept, there is the potential to revoke 
tokens such that they become invalid for authorization.  UFAA does not support token 
revocation via the FIMS_Authz server.  While token revocation can provide additional security 
for unneeded or compromised tokens, the infrastructure to support token revocation introduces 
new attack vectors against UFAA.  In addition, token revocation as a feature is non-trivial to 
scale and may harm efficient growth of this overall system. 

5.11. Token Checking 
Similar to token revocation, the concept of token validation at the authorization server can add 
certain security benefits.  However, this process does open UFAA to additional threats that do 
not currently outweigh the benefits.  So, until the cost-benefit balance changes, there is no 
support for token validation as a service within UFAA. 

5.12. Message Signing 
UTM has three major security goals in the exchange of operational messages within the USS 
Network:  message integrity, non-repudiation, and message authentication.  To achieve these 
three goals, UTM takes the approach of having USSs digitally sign the messages that they 
send.  A JWS is used to achieve this message signing. 
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5.12.1 Header 
The JOSE (JSON Object Signing and Encryption) header of the JWS used in Message Signing 
will have the following required fields (per JWS spec and UTM needs): 
 

● alg: The algorithm used to sign the JWS, which is required to be a registered JSON Web 
Algorithm (JWA). The discussion on JWS above is applicable here, with the same set of 
allowed algorithms. See RFC 7518 for details on JWA.  

● typ: The type is used by JWS applications to declare the media type of this complete 
JWS. In this case, it must be “JOSE” per RFC 7515.  

● x5u: The "x5u" (X.509 URL) Header Parameter is a URI [RFC 3986] that refers to a 
resource for the X.509 public key certificate or certificate chain [RFC 5280] 
corresponding to the key used to digitally sign the JWS. 

● kid: The Key ID of the JWK used to sign.  Note that the jku reference will provide a set of 
keys with unique key identifiers.  Those identifiers will be searched to match against this 
kid. 

● x5t#S256: A thumbprint of the X.509 cert used to sign. 
● crit: The critical field will not be used initially, but implementers should be aware that it 

may be needed as we work through use cases and security concerns.  This field allows 
for defining additional required fields in this header that MUST be understood and 
processed that are not defined in the JWS specification. 

5.12.2 Payload 
The payload of the JWS will be the same character string as the HTTP body in base64url 
encoding. For example this may be a complete Operation instance, base64url encoded, if the 
data exchange occurs on the /operations endpoint. 

5.12.3 Signature 
The signature is calculated on the payload based on the information in the header.  See the 
JWS section and the JWS spec for more insight.  

5.12.4 Supplying the Signature 
The JWT is sent as an HTTP header of a regular Application Programming Interface (API) call. 
The field name is as follows: 

● x-utm-message-signature : A JWS signature of the HTTP body (details below).  
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5.12.5 Example 
Assume a USS needs to send the following Position to another USS: 
 

{ 

  "altitude_gps_wgs84_ft": 1111.111, 
  "altitude_num_gps_satellites": 22, 
  "air_speed_source": "MEASURED", 
  "enroute_positions_id": "d10cd900-086f-43c7-9d6c-BAADCAFEF00D", 
  "gufi": "00000000-0000-4444-8888-000000000000", 
  "hdop_gps": 1.117, 
  "time_measured": "2016-10-04T09:15:40.727Z", 
  "time_sent": "2016-10-04T09:15:41.491Z", 
  "track_bearing": 33.44, 
  "track_bearing_reference": "MAGNETIC_NORTH", 
  "track_bearing_uom": "DEG", 
  "track_ground_speed_kn": 33.33, 
  "uss_name": "uss.provider321.net", 
  "vdop_gps": 0.932, 
  "location": { 

    "type": "Point", 
    "coordinates": [ 

      -122.05635935068132, 
      37.41436490284069 
    ] 

  } 

} 

 

 
That Position instance in Base64URL encoding (as required for JWS creation) would be: 
 

eyJhbHRpdHVkZV9ncHNfd2dzODRfZnQiOjExMTEuMTExLCJhbHRpdHVkZV9udW1fZ3BzX3NhdGV

sbGl0ZXMiOjIyLCJhaXJfc3BlZWRfc291cmNlIjoiTUVBU1VSRUQiLCJlbnJvdXRlX3Bvc2l0aW

9uc19pZCI6ImQxMGNkOTAwLTA4NmYtNDNjNy05ZDZjLUJBQURDQUZFRjAwRCIsImd1ZmkiOiIwM

DAwMDAwMC0wMDAwLTQ0NDQtODg4OC0wMDAwMDAwMDAwMDAiLCJoZG9wX2dwcyI6MS4xMTcsInRp

bWVfbWVhc3VyZWQiOiIyMDE2LTEwLTA0VDA5OjE1OjQwLjcyN1oiLCJ0aW1lX3NlbnQiOiIyMDE

2LTEwLTA0VDA5OjE1OjQxLjQ5MVoiLCJ0cmFja19iZWFyaW5nIjozMy40NCwidHJhY2tfYmVhcm

luZ19yZWZlcmVuY2UiOiJNQUdORVRJQ19OT1JUSCIsInRyYWNrX2JlYXJpbmdfdW9tIjoiREVHI

iwidHJhY2tfZ3JvdW5kX3NwZWVkX2tuIjozMy4zMywidXNzX25hbWUiOiJ1c3MucHJvdmlkZXIz

MjEubmV0IiwidmRvcF9ncHMiOjAuOTMyLCJsb2NhdGlvbiI6eyJ0eXBlIjoiUG9pbnQiLCJjb29

yZGluYXRlcyI6Wy0xMjIuMDU2MzU5MzUwNjgxMzIsMzcuNDE0MzY0OTAyODQwNjldfX0 
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To create a header for this JWS, we would need to determine appropriate values for the fields 
described above.  Using notional values, the JOSE header could be: 
 

{ 

  "alg": "RS256", 
  "typ": "JOSE", 
  "kid": "e337ac10-0ad9-4193-8cbd-453087ece360", 
  "x5u": 

"uss.provider321.net/.well-known/uas-traffic-management/my_cert.der", 
  "x5t#S256": 

"77ad11c0fbb461eabe35c1dde60c5a871ae80b5c019029b4cdb2493f2f2813db", 
  "crit": [] 

} 

 
This is a good point to remind readers of the USS Naming requirements with this concrete 
example.  These requirements link names between the JWS header, JWS payload, 
access_token, and previously persisted data. 
 
That JOSE header in Base64URL encoding (as required for JWS creation) would be: 
 

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpPU0UiLCJraWQiOiJlMzM3YWMxMC0wYWQ5LTQxOTMtOGN

iZC00NTMwODdlY2UzNjAiLCJ4NXUiOiJ1c3MucHJvdmlkZXIzMjEubmV0Ly53ZWxsLWtub3duL3

Vhcy10cmFmZmljLW1hbmFnZW1lbnQvbXlfY2VydC5kZXIiLCJ4NXQjUzI1NiI6Ijc3YWQxMWMwZ

mJiNDYxZWFiZTM1YzFkZGU2MGM1YTg3MWFlODBiNWMwMTkwMjliNGNkYjI0OTNmMmYyODEzZGIi

LCJjcml0IjpbXX0 

 
To create the signature, concatenate the two Base64URL encodings with a ‘.’ and apply the 
noted algorithm (via the alg  in the JOSE header, in this case HMAC using SHA-256) using the 
private key associated with the noted public key (pointed to by the x5u  in the JOSE header, 
having the thumbprint indicated by x5t#S256 ).  It is good to emphasize how this protects the 
header as part of the signature.  Any tampering of the header after signing would invalidate the 
signature. 
 
Notionally that would look like: 
 
HMACSHA256( 

  base64UrlEncode(header) + "." + 

  base64UrlEncode(payload), 

  your_private_256_bit_private_key 

) 
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The signature resulting from this function would be then concatenated with the header and body 
using ‘.’ in between to produce the final JWS (highlights in this sentence match colors in JWS 
below): 
 

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpPU0UiLCJraWQiOiJlMzM3YWMxMC0wYWQ5LTQxOTMtOGN

iZC00NTMwODdlY2UzNjAiLCJ4NXUiOiJ1c3MucHJvdmlkZXIzMjEubmV0Ly53ZWxsLWtub3duL3

Vhcy10cmFmZmljLW1hbmFnZW1lbnQvbXlfY2VydC5kZXIiLCJ4NXQjUzI1NiI6Ijc3YWQxMWMwZ

mJiNDYxZWFiZTM1YzFkZGU2MGM1YTg3MWFlODBiNWMwMTkwMjliNGNkYjI0OTNmMmYyODEzZGIi

LCJjcml0IjpbXX0.eyJhbHRpdHVkZV9ncHNfd2dzODRfZnQiOjExMTEuMTExLCJhbHRpdHVkZV9
udW1fZ3BzX3NhdGVsbGl0ZXMiOjIyLCJhaXJfc3BlZWRfc291cmNlIjoiTUVBU1VSRUQiLCJlbn

JvdXRlX3Bvc2l0aW9uc19pZCI6ImQxMGNkOTAwLTA4NmYtNDNjNy05ZDZjLUJBQURDQUZFRjAwR

CIsImd1ZmkiOiIwMDAwMDAwMC0wMDAwLTQ0NDQtODg4OC0wMDAwMDAwMDAwMDAiLCJoZG9wX2dw

cyI6MS4xMTcsInRpbWVfbWVhc3VyZWQiOiIyMDE2LTEwLTA0VDA5OjE1OjQwLjcyN1oiLCJ0aW1

lX3NlbnQiOiIyMDE2LTEwLTA0VDA5OjE1OjQxLjQ5MVoiLCJ0cmFja19iZWFyaW5nIjozMy40NC

widHJhY2tfYmVhcmluZ19yZWZlcmVuY2UiOiJNQUdORVRJQ19OT1JUSCIsInRyYWNrX2JlYXJpb

mdfdW9tIjoiREVHIiwidHJhY2tfZ3JvdW5kX3NwZWVkX2tuIjozMy4zMywidXNzX25hbWUiOiJ1

c3MucHJvdmlkZXIzMjEubmV0IiwidmRvcF9ncHMiOjAuOTMyLCJsb2NhdGlvbiI6eyJ0eXBlIjo

iUG9pbnQiLCJjb29yZGluYXRlcyI6Wy0xMjIuMDU2MzU5MzUwNjgxMzIsMzcuNDE0MzY0OTAyOD

QwNjldfX0.2pUJQJXJFepenvqMM1DedCFtFGeECAPShrLkPZu-pr8 

 
Through testing with multiple implementation partners, it was discovered that including the 
entire JWS in an HTTP header resulted in performance and stability issues on the USS 
Network.  Essentially, the JWS is typically too large to reasonably contain in an HTTP header 
since there are several weblayers that have strict limits (for good reasons) on the maximum size 
of an HTTP header, despite the explicit lack of a standardized limit.  Thus, the preferred 
approach would be to include just the header and the signature as an HTTP header, with the 
JWS payload being exchanged for an empty string.  The result of that operation would be 
included as the HTTP header x-utm-message-signature  during a PUT request to the 5

other USSs’ /positions  endpoint as illustrated here: 
 

x-utm-message-signature:“eyJhbGciOiJIUzI1NiIsInR5cCI6IkpPU0UiLCJraWQiOiJlMz
M3YWMxMC0wYWQ5LTQxOTMtOGNiZC00NTMwODdlY2UzNjAiLCJ4NXUiOiJ1c3MucHJvdmlkZXIzM

jEubmV0Ly53ZWxsLWtub3duL3Vhcy10cmFmZmljLW1hbmFnZW1lbnQvbXlfY2VydC5kZXIiLCJ4

NXQjUzI1NiI6Ijc3YWQxMWMwZmJiNDYxZWFiZTM1YzFkZGU2MGM1YTg3MWFlODBiNWMwMTkwMjl

iNGNkYjI0OTNmMmYyODEzZGIiLCJjcml0IjpbXX0..2pUJQJXJFepenvqMM1DedCFtFGeECAPSh
rLkPZu-pr8” 

 

5 Note that RFC 7230 states that HTTP header labels are case-insensitive.  We use all lower-case as a 
stylistic choice still compatible with the HTTP standard. 
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Note the two dots separating the JWS header from the JWS signature since the JWS payload is 
technically still included as an empty string. 

5.12.6 Discussion 
Message signing is a key mitigation against several threats in the UTM System.  At a high level, 
these threats include, but are not limited to: 
 

● Repudiation of messages 
● Message re-use 
● Message tampering en route or at the endpoint 
● Message forgery 

 
The header is of a relatively predictable and manageable size.  The only elements that may add 
length to the HTTP header are the x5u field and any potential extensions in the future since all 
other fields including the JWS signature are of known size. 
 
The approach presented here leverages a design choice described in RFC 7515.  For clarity, 
Appendix F from that document is copied here: 
 

Appendix F.  Detached Content 
 
   In some contexts, it is useful to integrity-protect content that is 
   not itself contained in a JWS.  One way to do this is to create a JWS 
   in the normal fashion using a representation of the content as the 
   payload but then delete the payload representation from the JWS and 
   send this modified object to the recipient rather than the JWS.  When 
   using the JWS Compact Serialization, the deletion is accomplished by 
   replacing the second field (which contains BASE64URL(JWS Payload)) 
   value with the empty string; when using the JWS JSON Serialization, 
   the deletion is accomplished by deleting the "payload" member.  This 
   method assumes that the recipient can reconstruct the exact payload 
   used in the JWS.  To use the modified object, the recipient 
   reconstructs the JWS by re-inserting the payload representation into 
   the modified object and uses the resulting JWS in the usual manner. 
   Note that this method needs no support from JWS libraries, as 
   applications can use this method by modifying the inputs and outputs 
   of standard JWS libraries. 
 

 
There are difficulties and potential pitfalls with such an approach related to the separation of 
payload and signature, but those issues are outweighed by the benefits of leveraging existing 
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JWS libraries, REST architectures and libraries, and the ability to use the signature separately 
from the payload for other purposes within the UTM System. 

5.13. Application Programming Interface (API) Documentation 
There are many details provided in this document on UFAA.  Most details that a development 
team would need are centered around JSON data schemas and endpoints.  There are a 
growing number of ways to detail such API-centered systems.  For UFAA, the OpenAPI 
Specification version 2.0 is used to document the schemas and endpoints and is a format that is 
human-readable and machine-parseable.  The ability of software to use the API documentation 
as input allows for the automatic checking of semantics and the automatic generation of code. 
The API documentation should be made available publicly, as the security of UFAA does not 
rely on obscurity in any way. 
 
The API is important to know what data to send to what endpoint and what data to expect in 
return, but it does not describe when endpoints should be called and what calls should follow 
other calls.  For those purposes, UFAA will rely on this document when possible, and 
sometimes the UTM USS Specification when appropriate.  Between these two documents, USS 
implementers should have sufficient insight to USS requirements to build a USS to the correct 
specifications. 
 
An additional element that is documented in the API is the authorization scope set for each 
endpoint.  The scopes are taken directly from the Role-Based Access Control scheme for UTM, 
which is described in the appendices. 

5.14. Discovery of Authorization Server 
It is assumed that stakeholders within the UTM System will know the host address of the 
authorization server.  Further details of the server are provided in a .well-known location on that 
server as specified in RFC 8414.  This well-known location is 
“/.well-known/oauth-authorization-server”.  The implemented schema of that JSON file is 
available in the authorization server API documentation.  Further details are not provided in this 
document. 

5.15. OAuth 2.0 Token Request 
OAuth 2.0 offers various flows for providing authorization.  UFAA currently only uses the client 
credentials grant flow.  This is a simplified flow due to the fact that the client (the entity making 
the resource requests) and the resource owner (the entity that is capable of granting access to 
resource) are the same entity (see Roles in RFC 6749).  The diagram as provided in the 
specification is reproduced here: 
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Figure 2.  Client and Authorization Server exchange. 

 
The client authentication is completed via Message Signing.  The access token is a bearer 
token represented as a JWT. 
 
For this flow, the client is required to provide a grant_type and scope as an 
application/x-www-form-urlencoded  HTTP payload.  The grant_type value must be 
“client_credentials” and exactly one scope MUST be provided and represents the scope desired 
in the access token.  If this field is omitted or contains more than one scope, the request will be 
rejected by the authorization server.  The scopes are known to the client through the 
appropriate API documentation or other UTM documentation provided to USS implementers 
and is out-of-scope  of this document.  The client also provides a “client_id” with the value of its 6

registered USS name. This is the same name that bridges the certificates and would appear in 
the ‘sub’ field of the access_token provided by this request.  The client_id field will be used by 
the authorization server as a hint and sanity check as to the identity of the client.  This will likely 
be helpful in cases where there may be many valid DNS names in the certificates.  The client_id 
is described in the client password section of RFC 6749, but is used in the context described in 
this paragraph. 
 
The authorization server will perform the following checks upon receiving a token request: 
 

1. All required fields, properly formatted in HTTP body. 
2. JWS provided in header is properly signed with a valid cert. 
3. client_id is contained as a subject alternative name in the cert used to sign JWS. 
4. client_id represents a known USS. 
5. That USS has the appropriate role to request the given scope. 

 
If any of these checks fails, the access_token will not be granted by the authorization server. 
 
Note that scope is restricted to single values versus an array of values.  This is in support of the 
Principle of Least Privilege, which is a feature of UFAA and supports mitigations against several 
threat models. 

6 Pun intended. 
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5.15.1. Signing for Authentication 
The Message Signature would sign the HTTP payload (i.e. the 
application/x-www-form-urlencoded data described above) in the same manner as 
described in the Message Signature section of this document.  This signature would be the 
authentication method employed by the Authorization Server. The only exception is that instead 
of a JSON message in the body of the JWS, the data would be x-www-form-urlencoded 
data as provided in the HTTP body. The signature would be provided as an HTTP header with 
the same name as previously described: x-utm-message-signature .  

7

 

A successful request will result in the Authorization Server sending the client a JSON response 
as described in RFC 6749.  Specifically, the response will contain the following fields: 
 

● access_token: The requested token. 
● token_type: The token type will always be “bearer” in UFAA. 
● expires_in: Number of seconds until the ‘exp’ value in the token is reached. 
● scope: The scope of the token, must be equal to the requested scope, else the request 

for the token should have been rejected. 
 
The authorization server must be configured to adhere to the OAuth 2.0 specification in regards 
to error responses. 

6. Exercising UFAA 
In this section, sequence diagrams are used to illustrate UFAA data exchanges based on the 
concepts discussed in the sections above. 
 

7 Note: this is a design choice that should be discussed further. We could use the Authorization HTTP 
header, but no registered schemes fit this approach. It is reasonable and there is precedent for defining 
an application or domain-specific scheme to make use of the Authorization header. A potential value 
could be “UTM-JWS” for example. This would result in a header such as this (without the quotes): 
“Authorization: UTM-JWS ej34f…<the JWS>”.  Unclear which is better:  using the standard header with a 
unique scheme or using a UTM-specific header while maintaining consistency with the UTM data 
exchanges. 
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6.1. Token Request 

 
Figure 3.  Detailed USS to FIMS Authorization server token request. 
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6.2. Certificate Fetch 
Note that certificates will also be available from Certificate Authorities on behalf of a USS.  

 
Figure 4.  Fetching certificate from another USS. 

 
 
 

6.3. Application-level Security Checks 
With all of the infrastructure and mechanisms described throughout this document in place, it is 
now possible to describe specific checks that the USSs will be required to perform to maintain 
the security of the USS Network and UTM as a whole.  
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6.3.1. Name checks 
A USS receiving a data payload via an API call must check that the sub claim in the access 
token matches the uss_name in the data payload.  This protects against several attacks 
including token re-use and USS spoofing.  In addition, a USS receiving a data payload via an 
API call must check that the uss_name matches a name in the certificate used to sign the 
payload.  This check prevents elevation of privilege attacks, amongst other potential threats. 
For further insight into abuse and misuse within an OAuth 2.0 implementation, RFC 6819 is an 
excellent resource and was a key guiding document for the development of UFAA. 
 

6.3.1.1.  Implications of Relaxing Payload to Access Token 
If this name check is not required, then a USS can re-use an access token that it obtained from 
a valid data exchange with a USS.  For example assume USS A uses the HTTP PUT method to 
send data to USS B with a valid access token (call it Token X). USS B may store Token X. 
Then USS B may use Token X to access an endpoint on USS C.  If USS C does not check the 
sub claim in the access token for a match against the supplied data, then USS B is provided 
unauthorized access to a resource.  This can be an example of escalation of privilege if the 
endpoint USS B is accessing with Token X is not typically accessible by USS B’s role(s). 
Escalation of privilege is one of the most dangerous vulnerabilities in any computer system or 
network.  See Figure 5 as an illustration of this example. 
 

 
Figure 5.  Checking names between access token and payload. 

 

6.3.1.2.  Implications of Relaxing Payload to Signature Check 
If the check between the payload data and the UFAA Certificate (used to create the JWS) is not 
required, then a USS can send data to another USS with a different identity.  For example 
assume USS A uses the HTTP PUT method to send data to USS B with a valid access token 
(call it Token X). USS B may store Token X.  Then USS B may use Token X to access an 
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endpoint on USS C.  If USS B creates a valid JWS of the exchanged data and includes USS A 
as the uss_name in the data payload, then USS C would recognize the access token as 
matching the data payload (both reference USS A).  USS C would also recognize the JWS as 
being valid, though signed by USS B.  If the check that the UFAA Certificate does not 
appropriately include USS A's name, then USS B has successfully spoofed data to USS C.  This 
undermines trust in the entire UFAA.  See Figure 6 as an illustration of this example. 

 
Figure 6.  Checking names between signature and HTTP payload. 

 

6.3.2. Access Token Time Checks 
A USS receiving any request requiring an access token must ensure that the times are valid. 
The timeout of tokens is a major mitigation against token abuse.  Since there may be issues 
with clock synchronization, tokens should be generated with time limits that are well clear of 
reasonable uncertainty in clocks across systems.  Else, an assumption could be made that 
clock synchronization within the USS Network is a solved problem (note it is NOT as of this 
writing). 

6.4. Potential Algorithm for USS Data Exchange 
A formal requirements document based on the information and analysis provided in this 
document may be produced by NASA in the future.  Meanwhile, by synthesizing the information 
provided herein, some requirements can be inferred. An algorithm can subsequently be defined 
for validating data requests within the USS Network.  A nominal version of such an algorithm is 
provided below and will be referred to as Algorithm 1.  Note this flow assumes that data are 
PUT or POSTed to a USSs endpoint.  Similar steps and security arguments can be documented 
for GET requests from server, but the GET flow will not be documented further here. 
 

1. Validate certificates.  Note that this initial "step" is inferred for all uses of certificates 
and is not a separate "active" step for every data exchange.  See section X.X for 
discussion on Certificate Authorities and which CAs should be recognized. 
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2. Check Access Token.  When a server receives a data request, the initial step should be 
to check the access token.  This is often handled by layers prior to the application layer. 
For example many API gateways will provide token validation services.  As such, the 
following requirements are assumed to be self-evident in terms of standard Internet 
security practices and not unique to UFAA.  Regardless, they will be noted as 
requirements of the system, but not discussed further. 

a. Access token is validly signed by recognized Authorization Server 
b. Access token contains the required claims 
c. Access token contains valid claims related to time 
d. Access token contains the appropriate scope for the endpoint 

3. Pass access token claims to the application layer. Most gateway layers offer a facility 
for passing access token claims to the application layer.  This is a necessary step to 
allow further security checks. 

4. Recreate JWS. Using information from Section 5.12.6 and RFC 7515 use the 
x-utm-message-signature  header and the HTTP JSON body to recreate the JWS 
as originally generated by the client server. 

5. Check JWS.  Using RFC 7515, check that the JWS is valid. 
6. Check names.  This is the critical step within UFAA.  These checks are unique to UFAA 

as they require checking against elements in the data payload with other 
cryptographically secure elements in the data exchange. 

a. Check that uss_name == sub claim.  This check is discussed in Section 6.3.1. 
The relaxation of this check is further explored in Section 6.3.1.1. 

b. Check that uss_name == (a subject-alternative name within the UFAA 
Certificate).  This check is discussed in Section 6.3.1.  The relaxation of this 
check is further explored in Section 6.3.1.2. 
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Appendices 

A1. Open Issues 
As discussed in the opening of this document, there were open issues to be discussed and 
developed further before this document could be formalized.  In this section, a list and 
description is provided for the several known issues.  This list should not be assumed to be 
complete.  Only through further collaborative development with varied stakeholders will a 
reasonable maturity level be reached for this document.  This current document should be taken 
as a starting point for discussions on the road to standardization of authentication and 
authorization with a future, operational UTM System. 

A1.1. Message Signing 
In the development of the Message Signing section, several concepts were explored, but no 
specific, established standard was easily applied to UTM.  Several draft RFCs exist that point 
the way to potential solutions.  The approach presented here is a synthesis of that 
publicly-available information, coupled with key discussions with security professionals and UTM 
domain experts.  The separation of the signature from the payload can be problematic, but this 
is currently balanced by the ability to use off-the-shelf tooling for JSON payloads in the HTTP 
body and limiting the size of the HTTP headers.  
 
If security were the only concern, the correct approach to exchanging data would be to use 
JWS-over-HTTP REST approach.  In this hypothetical approach, USSs would exchange JWS in 
the HTTP body rather than JSON.  This would easily allow for multiple signers of the same 
payload (as JWS allows for this) and would prevent splitting the signature from the signed 
payload (which has known issues related to reconstruction of the JWS).  However this approach 
is not supported by RESTful development tools and libraries.  In general the most accessible 
tools rely on the philosophy of exchanging JSON payloads via HTTP, which then facilitates 
consistent, reliable, easily-maintained software for serialization/deserialization, validation, 
persistence, and several other qualities/features.  Losing all of those benefits currently outweigh 
the security gains of exchanging JWS in the HTTP body.  If the security cost equation changes 
for any reason, this approach needs to be revisited. 

A1.2. Authentication to the Authorization Server 
The approach to authenticating a USS to the authorization server presented above was the 
result of detailed examination within NASA (see the HTTP signing discussion above, for 
example), however the approach was not implemented nor tested.  This issue will need further 
discussion and testing before formalization.  A change in approach based on broader 
stakeholder feedback would not be surprising, but should be well-justified. 
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OpenID Connect 1.0 has approaches for authenticating to an authorization server.  However, 
this is mainly for retrieving an access token that can be used explicitly for authentication 
purposes with other systems.  The approach to authenticating to the authorization server could 
still be leveraged, if for no other reason than it is well-defined, has implementations in the wild, 
and would serve the needs of UTM.  A minor downside is additional claims in the access token 
that is provided by the authorization server that serve no real purpose within UTM.   This 
approach could also levy additional requirements on the authorization server (like additional 
OAuth 2.0 flows), which may not be desired for simplicity’s sake. 

A1.3. Use of .well-known 
It may not be necessary to self-host CA-anchored certs.  If this is true, then the entire 
.well-known concept may have limited value within UFAA. 

A1.4. Use of aud  Claim 
The use of the aud  claim in a bearer token offers a great deal of additional security, protecting 
against several token re-use and other attacks.  The cost is increased token management on 
the USSs within the UTM System since USSs would need to keep track of different tokens per 
endpoint per other USS.  This may be a reasonable cost.  Rather than introduce additional 
complexity, we decided against the use of the aud claim as we felt we had good coverage of our 
documented threats through other means.  However, as this analysis is reviewed and 
formalized by others, it would not be surprising to have the aud  claim highlighted as a key 
security feature. 

A1.5. Implementation of JWK 
The section on JWK requires significant further review.  This was not implemented nor tested in 
NASA’s UTM Project. There may be bugs in the descriptions and there may be significant 
changes required in its use, especially in light of potential changes in .well-known. 

A1.6. PKI 
The use of public, trusted CAs may have vulnerabilities (open to attacks on the Internet as a 
whole) and acceptability issues (some security-minded stakeholders may object to relying on 
general, non-governmental CAs).  The upside is the ease of adoption and use.  Further analysis 
of this approach is warranted.  The outcome may point to the necessity of a different PKI 
approach. 
 
In addition, there may be requirements for USSs to interact with networks rooted at a different 
trust anchor, such as those within the US Federal Government.  If this were the case, then 
USSs would need to be evaluated to ensure they could make such exchanges since they are 
often limited to only trusting traditional Internet-only CAs.  This issue should be tracked as UTM 
implementations mature and requirements become clearer. 
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A1.7. Varying Token Timeouts 
The research implementation of the FIMS Authorization server currently uses a blanket value for 
defining the exp claim of an access token.  For certain scopes, it may make sense to have 
different exp values, thus extending or shortening the valid time for those tokens.  NASA did not 
perform any analysis to determine any of these varying timings, but it is likely that this approach 
would be a reasonable mitigation against token abuse for high-value access tokens that could 
cause problems within the USS Network, if they were compromised. 

A1.8.  Encrypted Messages 
While TLS provides transport-level encryption of data exchanges, there may be future use 
cases wherein application-level encryption is also required.  In such cases, the base standard 
for JWE should be considered a primary option.  The main reasons for this recommendation 
include the fact that JWE is a recognized standard, there are several JWE library 
implementations that currently exist supporting several programming languages, and JWE 
security issues are monitored by the security community.  Further analysis of the current 
recommended approach to message exchange detailed in this document should be performed 
to determine how or if the approach should change to support application-level encryption via 
JWE.  It is the authors’ perspective that exchange of JWE could be relatively easily incorporated 
into the approach documented herein, but details will not be provided.  Some considerations 
include deciding which plaintext data to encrypt and how the JWE should be exchanged (as the 
body of the HTTP request or as an element in a new JSON schema, for example). 

A1.9.  Order of Checks 
A lesson learned from NASA Technical Capability Level 4 testing was that the order of the 
various checks matters.  At a minimum, the order of the checks has an impact on the HTTP 
responses that a server would return to an invalid data request.  For example, a bad access 
token may result in an HTTP 403 status code response, but if that data request also had 
malformed JSON, it may elicit an HTTP 400 status code response.  The order of these checks 
was not specified in the TCL4 version of the USS Specification, which led to issues with 
checking out the USS participants.  For example, some  tests of the USSs assumed a certain 
HTTP response, but when a different one was returned, that test would be marked as “failed” for 
that USS, although the USS had just implemented rule checking in a different order and was 
within the published USS Specification. 
 
Thus, issues related to the order of security and business rule checks need to be specified, or 
USSs need to be robust to differing implementations for an operational UTM System. 
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A1.10.  Additional Uses of Signatures 
This document focuses on the use of certificates and signatures for USS-to-USS 
communications.  It may be appropriate, depending on the operational architecture of the UTM 
System, to use the security elements elsewhere as well.  A key example is within the discovery 
process for USSs.  Discovery is the process by which USSs gather information about how and 
when to contact other USSs.  For consistent and secure communications within UTM, 
signatures of certain data may be relevant in the discovery process.  This does not preclude the 
use of these certificates and signatures in other parts of UTM, but discovery is a key example. 

A1.11.  JWT Best Current Practices 
Since the work documented in this paper began, a new RFC draft Best Current Practices (BCP) 
document entitled “JSON Web Token Best Current Practices” has been published.  In that 
document there are several vulnerabilities and mitigations that are relevant to JWT within UFAA. 
When the work herein is formalized into a standard or set of operational rules, the details of that 
document need to be incorporated. 
 
As an example, the set of algorithms that are allowed in UFAA may need to be pruned and may 
need to differ from the algorithms required by JWA to meet the security needs of UFAA. 
Specifically, since Hashed Message Authentication Codes (HMAC) are not used in UFAA, all 
HMAC-based algorithms may need to be excluded from use in UFAA despite being required per 
the JWA specification.  This is due to a known vulnerability wherein attackers can take 
advantage of the ‘alg’ claim in the JOSE header by indicating one approach to signing, while 
actually signing with another.  This is only possible due to the acceptance of both HMAC and 
RSA-based signing algorithms. Another key mitigation recommended in the BCP document is 
the use of the ‘aud’ claim as discussed here in Section A1.4.  In general, any published updates 
to JWT guidance (or any relevant security practices) must be recognized with this specification 
updated appropriately. 

A2. Role-Based Access Control 

A2.1. RBAC Overview 
UTM implements Role-Based Access Control (RBAC).  RBAC is a method for defining 
authorizations in a system.  Roles are defined with certain permissions and then users are 
assigned to one or more roles.  They inherit all the permissions for their roles.  There are many 
intricacies that need to be addressed for successful implementation of an RBAC scheme, very 
few of which will be addressed in the current draft of this document.  The definitions used for 
describing the implementation of RBAC are taken from the INCITS 359 standard. 
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RBAC is only one way in which authorization can be managed in a system.  Another popular 
method is Attribute-based access control (ABAC).  With ABAC, users obtain authorizations 
based on attributes of their identity and those of the resources.  ABAC is argued as being better 
at fine-grained controls, but it takes much more effort to manage.  RBAC is more straightforward 
to manage, but may take more upfront planning to be truly effective.  Other methods will not be 
detailed here. NIST maintains documentation on RBAC. 
 
There are five key definitions used in RBAC as recommended by INCITS 359. These are 
Operations, Objects, Permissions, Roles, and Users. 

A2.2. Operations 
The allowed operations within the UTM authorization framework are simplified to read, write, 
and all.  The write operation is assumed to have all the capabilities of the read operation, plus 
the ability to write data.  The write operation is assumed to allow creation, update, and deletion 
of objects (when allowed by the concept).  The 'all' operation implies a superset of the write 
operation's capabilities, but usually these will be equivalent in capability level.  It is noted here 
for potential future use cases. 

A2.3. Objects 
The objects in the UTM authorization framework map to the API resources that are protected. 
Essentially these are the endpoints. 

A2.4. Permissions/Scopes 
Permissions are a subset of the cross product between the allowed operations and the set of 
objects.  The subset used defines all of the allowed actions on any object. These permissions 
are translated into scopes within the UTM authorization framework based on OAuth 2.0.  In 
general, we will use the OAuth terminology. 
 
The set of scopes used in the UTM OAuth 2.0 implementation is listed in the table below. 
Scopes take the form of <namespace>_<operation>.<object> where "operation" is the type of 
permission (read/write, etc.) and "object" is the type of thing the action is performed upon.  A 
"write" action implicitly grants read access to the subject as well as writing/updating.  The 
namespace may aid in deconfliction and clarity of scopes.  Terms conform to INCITS 359. 
 
Scopes are annotated directly to API endpoints for clarity on the access requirements of each 
endpoint.  Scopes within UTM are listed in Table A1. 
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Table A1: Scopes 

Scope Description 

utm.nasa.gov_read.fimsadmin Subject can read data internal to FIMS. 

utm.nasa.gov_write.fimsadmin Subject can read, create, and update data internal to FIMS. 

utm.nasa.gov_read.operation Subject can read operational data such as nominal Operation 
plans and Positions. 

utm.nasa.gov_write.operation Subject can read, create, and update operational data such as 
Operation plans and Positions. 

utm.nasa.gov_read.message Subject can read message data such as UTM Message and 
NegotiationMessage. 

utm.nasa.gov_write.message Subject can read, create, and update message data such as UTM 
Message and NegotiationMessage. 

utm.nasa.gov_read.publicsafe

ty 

Subject can read operations that are designated public safety 
operations. 

utm.nasa.gov_write.publicsaf

ety 

Subject can read, create, and update operations that are 
designated public safety operations. 

utm.nasa.gov_read.constraint Subject can read UTM constraint data such as UVRs. 

utm.nasa.gov_write.constrain

t 

Subject can read, create, and update UTM constraint data such 
as UVRs. This means that the Subject can define areas that 
restrict other operations. 

utm.nasa.gov_read.conflictma

nagement  

Subject can read conflict management data. 

utm.nasa.gov_write.conflictm

anagement 

Subject can read and write conflict management data. 
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A2.5. Roles 
A role is defined by INCITS 359 as "a job function within the context of an organization with 
some associated semantics regarding the authority and responsibility conferred on the user 
assigned to the role."  Roles within UTM are implemented as a set of permissions (scopes) and 
are summarized in Table A2. Some defined scopes in are not assigned to Roles since UTM did 
not yet have a need for the implementation.  
 

Table A2: Roles 

Scope Description 

UTM_AUTHORITY A small set of trusted users who manage identities of UTM actors 
such as USSs. 

For example, the UTM Authority vets a USS and assigns it 
USS_BASIC role.  Similarly, the UTM Authority vets a USS's 
capability for Public Safety, and adds the PUBLIC_SAFETY role to 
this USS in the FIMS Authorization server’s data set. 

FIMS_AUTHZ This is the service role supporting the FIMS Authorization server. 
This role cannot create, modify or delete UTM Identity data, rather 
access is read-only. 

USS_BASIC A USS. The UTM Authority assigns role after out-of-band vetting. 
The Basic role has these scopes: utm.nasa.gov_write.operation, 
utm.nasa.gov_write.message, utm.nasa.gov_read.constraint, 
utm.nasa.gov_read.uvin, utm.nasa.gov_write.conflictmanagement 

USS_PUBLIC_SAFETY A USS with the capability to support public safety operations and 
queries.  This role can be assigned only to a USS that has the 
USS_BASIC role.  The UTM Authority assigns this role after 
out-of-band vetting. 

For example, a Public Safety USS supports a public safety query 
by fanning-out requests to other USSs. 

USS_PUBLIC_SAFETY_REA

D 

A USS with the capability to support public safety queries. This role 
can be assigned only to a USS that has the USS_BASIC role.  
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For example a Public Safety USS queries other USSs to determine 
which USS is operating a particular vehicle. 

CONSTRAINT_MANAGER A USS with this role can publish airspace constraints such as 
UASVolumeReservations (UVRs) and other aeronautical data. 
The UTM Authority assigns this role after out-of-band vetting.  
 
For example because FIMS_OPS has the 
USS_CONSTRAINT_MANAGER role, thus is can publish 
UASVolumeReservations to the USS Network.  Similarly a USS 
with this role publishes UVRs to the USS Network. 

 

A2.6. Users/Subjects 
A user is defined by INCITS 359 "as a human being. Although the concept of a user can be 
extended to include machines, networks, or intelligent autonomous agents, the definition is 
limited to a person in this document for simplicity reasons."  Alternatively, the NIST SP 800-63 
series defines a subject as "a person, organization, device, hardware, network, software, or 
service."  Since "user" denotes more of a human-centric entity, UTM uses the term "subject" 
instead.  This exchange of terms does not affect the INCITS 359 concept in any material way, 
and is intended to just clarify who/what can be assigned a role. 

A2.7. Subject Assignments 
Subject Assignments are the mapping from subjects to roles.  This is a many-to-many mapping. 
This mapping is created upon onboarding of a new subject.  That process will be documented 
elsewhere.  For the present discussion, assume that this mapping exists. 

A2.8. Permission Assignments 
Permission Assignments are the mapping from roles to permissions.  This is a many-to-many 
mapping.  The following table includes the permission assignments for each role.  Note that if 
two roles have the exactly same set of scopes assigned to them, then they should not be 
separate roles. 

A2.9. Example 
Figure A1 shows a mapping between three USSs (the subjects) to two roles within UTM.  This 
mapping is the subject assignment.  The roles are mapped via permission assignments to 
various permissions.  The permissions have a one-to-one mapping to scopes as described in 
Table A1 above. 
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Figure A1.  Example mapping of subjects to permissions in role-based access control. 

 
In this notional example, USS A has the role “USS BASIC” which imparts the permissions 
WRITE OPERATION, WRITE MESSAGE, and READ CONSTRAINT.  USS C has the role 
“CONSTRAINT MANAGER” which imparts the permissions READ CONSTRAINT and WRITE 
CONSTRAINT.  USS B has both roles and thus has all of the listed permissions.  In an 
operational system, there would be several more roles and permissions.  Each role is awarded 
to a subject via some checkout or certification process. 

A3. Design Decisions Considered 
Several design decisions were considered for inclusion into this specification.  In this section, 
some of these are captured for reference, completeness, and potential future discussion. 

A3.1. HTTP Signing for Token Requests 
HTTP Signing is an approach described in an expired RFC draft document entitled “A Method 
for Signing HTTP Requests for OAuth.” This approach creates a JWS that contains the access 
token as a data element along with other fields.  The JWS may be signed using a symmetric or 
asymmetric approach, but in UFAA, an asymmetric approach is employed.  A key pair 
supported by an X.509 certificate (specifically UFAA Certificate) described by a JWK that is 
stored in a .well-known location accessible only via a TLS 1.2+ connection. 

A3.1.1. JWS Details in HTTP Signing 
The JSON that would be signed in this approach is guided by Section 3 of the RFC draft 
document and contains the following elements: 
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● at: The complete access token provided by the authorization server.  The value is null, 

but the field is still provided, when using HTTP Signing to authenticate to the 
authorization server for a token request. 

● ts: A UNIX timestamp indicating the time of signing. 
● m: The HTTP method used to make this request (GET, POST, PUT, etc.). 
● u: The host component of the URL to where this request is sent. 
● p: The path component of the URL to where this request is sent. 
● b: base64URL encoded hash of the HTTP request body, calculated as the SHA256 of 

the byte array of the body.  Note that this field needs further discussion on how to 
maintain some algorithmic flexibility. 

 
The header of the JWS used in HTTP Signing will have the following required fields (per JWS 
spec and UTM needs): 
 

● alg: The algorithm used to sign the JWS, which is required to be a registered JSON Web 
Algorithm (JWA).  See RFC 7518 for details on JWA.  

● jku: The JWK Set URL is a URI that indicates where the UFAA Certificate JWKS is 
located.  This must be the .well-known location discussed above. 

● kid: The Key ID of the JWK used to sign.  Note that the jku reference will provide a set of 
keys with unique key ids.  Those key ids will be searched to match against this kid. 

● x5t#S256: A thumbprint of the X.509 cert used to sign. 
● crit: The critical field will not be used initially, but implementers should be aware that it 

may be needed as we work through use cases and security concerns.  This field allows 
for defining additional required fields in this header that MUST be understood and 
processed that are not defined in the JWS specification. 

A3.1.2. Supplying the Signature 
The signature is sent via the HTTP Authorization header with the string “PoP” prepended and 
separated by a space.  The example from the specification is as follows: 
 
GET /resource/foo 

Authorization: PoP eyJ....omitted for brevity... 

A3.1.3. Reasons for Exclusion from UFAA 
UFAA moved away from the HTTP Signing approach for a couple of key reasons: 

● HTTP Signing is based on a proposed standard that was never finalized or fielded in a 
known operational system. 

● In operational systems it is easy for the original hash as supplied to be disconnected 
from the source that was hashed. This can be a problem for auditing and other use 
cases. 
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Thus, JWS was chosen to provide this functionality, which is an industry-accepted standard and 
which may be able to better leverage the infrastructure of each stakeholder that will need to be 
in place to handle access tokens.  In addition, JWS provides well-documented mechanisms to 
allow multiple entities to sign the same data, which may be a useful feature for some UTM data 
exchanges. 

A3.2. UTM-Specific Certificate Authority 
As a research activity, NASA investigated the potential of a UTM-specific CA.  Creating a 
domain-specific CA has too many security implications for practical implementation and 
maintenance.  There are documented practices for becoming and maintaining a CA (see RFC 
3647, RFC 6484, RFC 7382, and “Standards and Industry Regulations Applicable to 
Certification Authorities,” for example) and it is unclear which entity or collection of entities 
related to UTM would be willing to follow those practices for the exclusive use of the UTM 
System.  In addition, there are implications for Internet communication when certificates are 
rooted at a non-traditional CA.  This line of inquiry ended for NASA in 2017. 

A3.3.  Mutual TLS 
Default TLS is used to confidently identify the server which a client is contacting.  The identity of 
the client contacting that server is not checked at the Transport Layer in default TLS.  Mutual 
TLS is a standardized approach (see RFC 5246) to having both servers identify each other in a 
data exchange.  While there are implementations of Mutual TLS in the wild, it is not regular 
practice on the Internet as a whole.  The NASA UTM Project decided that it would be difficult to 
assure that all USSs were capable of supporting Mutual TLS, so the concept was not 
implemented.  If Mutual TLS were deemed feasible for USSs, its use would have a major 
positive impact on many security aspects within UTM.  However, if implemented, many of the 
recommended requirements within this document would need to be re-evaluated.  

A3.4.  Use of Access Tokens Outside USS Network. 
It is useful to note that the access tokens provided by the recognized authorization server within 
UFAA can be used by other services outside of the USS Network.  This is a positive side effect 
of the UFAA.  A key use case is the use of Supplementary Data Service Providers (SDSPs) by 
USSs.  It is likely that certain SDSPs would limit access to valid USSs.  By accepting access 
tokens from the USS Network, an SDSP would have confidence that the client requesting 
access is a valid USS.  This benefit would be gained without the SDSP needing to validate 
USSs or to continually check that the USS stays valid. 

A3.5.  Multiple Authorization Server Providers 
The OAuth 2.0 specification allows for resource servers to accept access tokens from more than 
one authorization server.  This approach, if applied to UTM, would introduce many 
interoperability complexities as those Authorization Servers would all need to either meet the 
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same specification or the resource servers would need to be configured to accept the 
formatting, content, and security features of each individual authorization server.  In addition, by 
distributing the creation of access tokens in this way, there are additional complexities related to 
the assignment and maintenance of roles within the UTM System.  The attack surface of the 
UTM System grows greatly by increasing the number of authorization servers beyond one. 
Thus, this design decision was rejected early on in UTM development. 

A3.6  Token Checking and Revocation 
As noted in Sections 5.10 and 5.11, there is a specification for token checking and token 
revocation, which an authorization server may implement.  This is explicitly excluded from the 
UFAA due the increased attack surface this service exposes versus the security benefit gained. 
Most of the mitigations gained through the use of token checking and revocation by the 
authorization server are already realized through other mechanisms within UFAA.  Further 
mitigations, such as the use of an ‘aud’ claim within the access_token, can further mitigate risks 
without exposing more issues through the implementation of a checking/revocation service. 
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Acronyms 
 
ABAC Attribute-based Access Control 

ANSP Air Navigation Service Provider 

API Application Programming Interface 

ASN.1 Abstract Syntax Notation-1 

CA Certificate Authority 

DER Distinguished Encoding Rules 

DNS Domain Name System 

DREAD Damage, Reproducibility, Exploitability, Affected users, Discoverability 

FIMS Flight Information Management System 

FIMS_Authz FIMS Authorization Server 

HMAC Hashed Message Authentication Code 

HTTP Hypertext Transfer Protocol 

HTTPS HTTP Secure 

IANA Internet Assigned Number Authority 

IETF Internet Engineering Task Force 

INCITS InterNational Committee for Information Technology Standards 

ISO International Organization for Standardization 

JOSE Javascript Object Signing and Encryption 

JSON Javascript Object Notation 

JWA JSON Web Algorithms 

JWE JSON Web Encryption 

JWK JSON Web Key 

JWKS JSON Web Key Set 

JWT JSON Web Token 

NAS National Airspace System 

NASA National Aeronautics and Space Administration 

NIST National Institute of Standards and Technology 

OAuth Open Authorization 

PKI Public Key Infrastructure 

PKIX PKI (X.509) 
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PoP Proof of Possession 

RBAC Role-based Access Control 

REST Representational State Transfer 

RFC Request for Comments 

RSA Rivest–Shamir–Adleman 

SDSP Supplemental Data Service Provider 

SHA-256 Secure Hash Algorithm, 256-bit 

STRIDE 
Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, 
Elevation of Privilege 

sUAS small UAS 

TCL Technical Capability Level 

TLS Transport Layer Security 

UAS Unmanned Aircraft System 

UFAA UTM Framework for Authentication and Authorization 

URI Uniform Resource Identifier 

URL Uniform Resource Locator 

USS UAS Service Supplier 

UTF-8 Unicode Transformation Format - 8bit 

UTM UAS Traffic Management 

UUID Universally Unique Identifier 

UUIDv4 UUID, version 4 

  

44 



 

References 

IETF Request for Comment (RFC) Documents (in order of RFC #)  
Chokhani, S., Ford, W., Sabett, R., Merrill, C., and S. Wu, "Internet X.509 Public Key 
Infrastructure Certificate Policy and Certification Practices Framework", RFC 3647, DOI 
10.17487/RFC3647, November 2003, <https://www.rfc-editor.org/info/rfc3647>. 
 
Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic 
Syntax", STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005, 
<https://www.rfc-editor.org/info/rfc3986>. 
 
Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, DOI 
10.17487/RFC4648, October 2006, <https://www.rfc-editor.org/info/rfc4648>. 
 
Shirey, R., "Internet Security Glossary, Version 2", FYI 36, RFC 4949, DOI 10.17487/RFC4949, 
August 2007, <https://www.rfc-editor.org/info/rfc4949>. 
 
Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 
5246, DOI 10.17487/RFC5246, August 2008, <https://www.rfc-editor.org/info/rfc5246>. 
 
Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, 
DOI 10.17487/RFC5280, May 2008, <https://www.rfc-editor.org/info/rfc5280>. 
 
Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known Uniform Resource Identifiers 
(URIs)", RFC 5785, DOI 10.17487/RFC5785, April 2010, 
<https://www.rfc-editor.org/info/rfc5785>. 
 
Saint-Andre, P. and J. Hodges, "Representation and Verification of Domain-Based Application 
Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the 
Context of Transport Layer Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March 2011, 
<https://www.rfc-editor.org/info/rfc6125>. 
 
Kent, S., Kong, D., Seo, K., and R. Watro, "Certificate Policy (CP) for the Resource Public Key 
Infrastructure (RPKI)", BCP 173, RFC 6484, DOI 10.17487/RFC6484, February 2012, 
<https://www.rfc-editor.org/info/rfc6484>. 
 
Hardt, D., Ed., "The OAuth 2.0 Authorization Framework", RFC 6749, DOI 10.17487/RFC6749, 
October 2012, <https://www.rfc-editor.org/info/rfc6749>. 
 

45 

https://www.rfc-editor.org/info/rfc3647
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc4949
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5785
https://www.rfc-editor.org/info/rfc6125
https://www.rfc-editor.org/info/rfc6484
https://www.rfc-editor.org/info/rfc6749


 

Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0 Threat Model and Security 
Considerations", RFC 6819, DOI 10.17487/RFC6819, January 2013, 
<https://www.rfc-editor.org/info/rfc6819>. 
 
Fielding, R., Ed., and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Message 
Syntax and Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014, 
<https://www.rfc-editor.org/info/rfc7230>. 
 
Kent, S., Kong, D., and K. Seo, "Template for a Certification Practice Statement (CPS) for the 
Resource PKI (RPKI)", BCP 173, RFC 7382, DOI 10.17487/RFC7382, April 2015, 
<https://www.rfc-editor.org/info/rfc7382>. 
 
Jones, M., Bradley, J., and N. Sakimura, "JSON Web Signature (JWS)", RFC 7515, DOI 
10.17487/RFC7515, May 2015, <https://www.rfc-editor.org/info/rfc7515>. 
 
Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)", RFC 7516, DOI 
10.17487/RFC7516, May 2015, <https://www.rfc-editor.org/info/rfc7516>. 
 
Jones, M., "JSON Web Key (JWK)", RFC 7517, DOI 10.17487/RFC7517, May 2015, 
<https://www.rfc-editor.org/info/rfc7517>. 
 
Jones, M., "JSON Web Algorithms (JWA)", RFC 7518, DOI 10.17487/RFC7518, May 2015, 
<https://www.rfc-editor.org/info/rfc7518>. 
 
Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token (JWT)", RFC 7519, DOI 
10.17487/RFC7519, May 2015, <https://www.rfc-editor.org/info/rfc7519>. 
 
Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format", STD 90, RFC 
8259, DOI 10.17487/RFC8259, December 2017, <https://www.rfc-editor.org/info/rfc8259>. 
 
Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0 Authorization Server Metadata", RFC 8414, 
DOI 10.17487/RFC8414, June 2018, <https://www.rfc-editor.org/info/rfc8414>. 
 
Richer, J., Ed., Bradley, J., and H. Tschofenig, “A Method for Signing HTTP Requests for 
OAuth”, draft-ietf-oauth-signed-http-request-03, Expired February 9, 2017, 
<https://tools.ietf.org/html/draft-ietf-oauth-signed-http-request-03>.  
 
Sheffer, Y., Hardt, D., and M. Jones, “JSON Web Token Best Current Practices”, 
draft-ietf-oauth-jwt-bcp-06, Expires December 9, 2019, 
<https://tools.ietf.org/html/draft-ietf-oauth-jwt-bcp-06>. 

46 

https://www.rfc-editor.org/info/rfc6819
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7382
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8414
https://tools.ietf.org/html/draft-ietf-oauth-signed-http-request-03
https://tools.ietf.org/html/draft-ietf-oauth-jwt-bcp-06


 

National Institute of Standards and Technology (NIST) 
Documents 
McKay, K., Cooper, D., “NIST Special Publication 800-52 Revision 2: Guidelines for the 
Selection, Configuration, and Use of Transport Layer Security (TLS) Implementations”, DOI 
10.6028/NIST.SP.800-52r2, August 2019, 
<https://csrc.nist.gov/publications/detail/sp/800-52/rev-2/final>. 
 
Grassi, P., Garcia, M., and Fenton, J., “NIST Special Publication 800-63 Revision 3: Digital 
Identity Guidelines”,  DOI 10.6028/NIST.SP.800-63-3, June 2017, 
<https://pages.nist.gov/800-63-3/sp800-63-3.html>. 
 
Stouffer, K., Lightman, S., Pillitteri V., Abrams, M., Hahn, A., “NIST Special Publication 800-82 
Revision 2: Guide to Industrial Control Systems (ICS) Security”, DOI 
10.6028/NIST.SP.800-82r2, May 2015, 
<https://csrc.nist.gov/publications/detail/sp/800-82/rev-2/final>. 
 

UTM Documents 
Aweiss, A., et al., “Technical Capability Level 3 Unmanned Aircraft Systems (UAS) Traffic 
Management (UTM) Flight Demonstration”.  2019 IEEE/AIAA 38th Digital Avionics Systems 
Conference (DASC), September 2019. 
 
Federal Aviation Administration, “Unmanned Aircraft System (UAS) Traffic Management (UTM): 
Concept of Operations v1.0: Foundational Principles, Roles and Responsibilities Use Cases and 
Operational Threads”, May 2018, <https://utm.arc.nasa.gov/docs/2018-UTM-ConOps-v1.0.pdf>. 
 
Kopardekar, P., Rios, J., Prevot, T., Johnson, M., Jung, J., Robinson III, J., “Unmanned Aircraft 
System Traffic Management (UTM) Concept of Operations”, 16th AIAA Aviation Technology, 
Integration, and Operations Conference, AIAA, June 2016, 
<https://utm.arc.nasa.gov/docs/Kopardekar_2016-3292_ATIO.pdf>.  
 
Rios, J., Smith I., Venkatesen P., Smith, D., Baskaran, V., Jurcak, S., Strauss, R., Iyer, S., 
Verma, P., “UTM UAS Service Supplier Development: Sprint 1 Toward Technical Capability 
Level 4”, NASA Technical Memorandum, NASA/TM-2018-220024, November 2018, 
<https://utm.arc.nasa.gov/docs/UTM_UAS_TCL4_Sprint1_Report.pdf>. 
 
Rios, J., Smith I., Venkatesen P., Smith, D., Baskaran, V., Jurcak, S., Iyer, S., Verma, P., “UTM 
UAS Service Supplier Development: Sprint 2 Toward Technical Capability Level 4”, NASA 

47 

https://csrc.nist.gov/publications/detail/sp/800-52/rev-2/final
https://pages.nist.gov/800-63-3/sp800-63-3.html
https://csrc.nist.gov/publications/detail/sp/800-82/rev-2/final
https://utm.arc.nasa.gov/docs/2018-UTM-ConOps-v1.0.pdf
https://utm.arc.nasa.gov/docs/Kopardekar_2016-3292_ATIO.pdf
https://utm.arc.nasa.gov/docs/UTM_UAS_TCL4_Sprint1_Report.pdf


 

Technical Memorandum, NASA/TM-2018-220050, December 2018, 
<https://utm.arc.nasa.gov/docs/2018-UTM_UAS_TCL4_Sprint2_Report_v2.pdf>. 

Other Documents 
InterNational Committee for Information Technology Standards, “INCITS 359-2012 (R2017) 
Information Technology - Role Based Access Control”, December 2017, 
<https://standards.incits.org/apps/group_public/project/details.php?project_id=1906>. 
 
International Telecommunication Union, “Information technology – ASN.1 encoding rules: 
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and 
Distinguished Encoding Rules (DER)”, ITU-T X.690, August 2015, 
<http://handle.itu.int/11.1002/1000/12483>. 
 
Microsoft Corporation, “The STRIDE Threat Model”, Nov 2009, 
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20). 
 
N. Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and C. Mortimore, “OpenID Connect 
Core 1.0 incorporating errata set 1”,  November 2014, 
<https://openid.net/specs/openid-connect-core-1_0.html>. 
 
OpenStack, “Security/OSSA-Metrics”, Accessed 7 Sept 2019, 
https://wiki.openstack.org/wiki/Security/OSSA-Metrics. 
 
Shostack, A., “Experiences Threat Modeling at Microsoft”, 2008, 
<https://adam.shostack.org/modsec08/Shostack-ModSec08-Experiences-Threat-Modeling-At-Mi
crosoft.pdf>. 

48 

https://utm.arc.nasa.gov/docs/2018-UTM_UAS_TCL4_Sprint2_Report_v2.pdf
https://standards.incits.org/apps/group_public/project/details.php?project_id=1906
http://handle.itu.int/11.1002/1000/12483
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://openid.net/specs/openid-connect-core-1_0.html
https://wiki.openstack.org/wiki/Security/OSSA-Metrics
https://adam.shostack.org/modsec08/Shostack-ModSec08-Experiences-Threat-Modeling-At-Microsoft.pdf
https://adam.shostack.org/modsec08/Shostack-ModSec08-Experiences-Threat-Modeling-At-Microsoft.pdf

